МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Приморского края

Администрация Дальнереченского ГО

МБОУ "СОШ № 5"

УТВЕРЖДЕНО Директор МБОУ «СОШ №5» _______Летовальцева С.Ю. Приказ №52 а от "12" 07 2022 г.

РАБОЧАЯ ПРОГРАММА

элективного курса «Физика в задачах и экспериментах»

> для 11 класса на 2022-2023 учебный год

> > Составитель: Козолуп Татьяна Дмитриевна учитель физики

1. Пояснительная записка

Данный курс предназначен для учащихся общеобразовательных учреждений 11 классов (учебник Г. Я. Мякишев, Б. Б. Буховцев, В.М. Чаругин), изучающих физику на базовом уровне, но интересующихся физикой и планирующих сдавать ЕГЭ по предмету.

Программа предметного курса учитывает **цели** обучения учащихся средней школы по физике и соответствует государственному стандарту физического образования. Материал излагается на теоретической основе, включающей вопросы электродинамики, оптики и квантовой физики. Курс " «Физика в задачах и экспериментах» " рассчитан на 34 часа (1час в неделю).

Процесс решения задач служит одним из средств овладения системой научных знаний по предмету. Задачи выступают действенным средством формирования основополагающих знаний и учебных умений. В процессе решения учащиеся овладевают методами исследования различных явлений природы, знакомятся с новыми прогрессивными идеями и взглядами.

Систематическое решение задач способствует развитию мышления учащихся, воспитывает трудолюбие, настойчивость, волю, целеустремленность, колоссальное терпение, является средством контроля знаний, умений и навыков.

Программа разработана с таким расчетом, чтобы учащиеся получили достаточно прочные знания по физике и в ВУЗе смогли посвятить больше времени профессиональной подготовке по выбранной специальности.

Реализация образовательных программ естественнонаучной и технологической направленностей по физике с использованием оборудования центра «ТОЧКА РОСТА»7-11 классы/Министерство просвещения Российской Федерации/,2022г.

1.1. Общая характеристика программы элективного учебного курса «Физика в задачах и экспериментах»

Реализация программы осуществляется по учебному пособию Громцевой О.И. Физика. ЕГЭ Полный курс А, Б, С. Самостоятельная подготовка к ЕГЭ.— М. «Экзамен», 2020 г.

Вид курса - профильно-ориентированный.

Одно из труднейших звеньев учебного процесса — научить учащихся решать задачи. Чаще всего физику считают трудным предметом, так как многие учащиеся плохо справляются с решение задач.

Необходимость создания данного курса вызвана тем, что требования к подготовке по физике выпускников школы возросли, в связи с введением единого государственного экзамена, а количество часов, предусмотренных на

изучение предмета, сократилось с 4 часов до 2 часов в неделю.

Программа курса предполагает проведение занятий в виде лекций и семинаров, а также индивидуальное и коллективное решение задач рекомендованных для подготовки к ЕГЭ по физике.

При решении задач по электродинамике главное внимание обращается на формирование умений решать задачи, на накопление опыта решения задач различной сложности. Разбираются особенности решения задач в каждом разделе физики, проводится анализ решения, и рассматриваются различные методы и приемы решения физических задач. Постепенно складывается общее представление о решении задач как описание того или иного физического явления физическими законами.

Программа элективного курса согласована с содержанием программы по физике для 10-11 классов Г.Я. Мякишева и является её существенным дополнением.

Курс рассчитан на 1 год обучения: всего 34 часа, 1 час в неделю.

Достижение планируемых результатов оценивается по успешности выполнения тематических тестов в форме ЕГЭ путем самооценки.

1.2. Цели и задачи элективного учебного курса «Физика в задачах и экспериментах»

Цель курса:

Знакомство с уровнем требований к экзамену по физике в формате ЕГЭ и подготовка учащихся к усвоению этого уровня.

Задачи курса:

- 1. развитие физической интуиции;
- 2. приобретение определенной техники решения задач по физике в соответствии с возрастающими требованиями современного уровня процессов во всех областях жизнедеятельности человека,
- 3. анализ структуры решения задач,
- 4. сформировать порядок состава операций, которые должны быть выполнены в процессе решения задачи,
- 5. научить основным операциям, из которых складывается процесс решения задач,
- 6. познакомить со структурой рациональной последовательности выполнения операций,
- 7. научить переносить усвоенный метод решения задач по одному разделу на решение задач на другие разделы предмета,
- 8. добиться определенного уровня сформированности умения решения задач.

Основные уровни:

первый уровень — умение анализировать содержание задачи, его, выполнять отдельные операции, общие для большого класса задач;

второй уровень — овладение операциями, связанными с особенностями использования различных способов решения задач (вычислительных, графических, качественных, экспериментальных);

третий уровень — овладение системой способов и методов решения задач, алгоритмами решения задач по конкретным темам разделов физики и общим алгоритмом решения задач;

четвертый уровень — овладение новыми способами решения физических задач, умению применять общий алгоритм к решению задач по темам и разделам;

пятый уровень — умение переноса структуры деятельности по решению физических задач на решение задач по другим предметам естественного цикла (химии, биологии).

1.3. Общая характеристика элективного учебного курса «Физика в задачах и экспериментах»

Программа рассчитана на 1 год обучения: 1 час в неделю всего 34 часа

В соответствии с учебным планом МБОУ СОШ № 5 на 2022-2023 учебный год в 11 классе физика преподается на базовом уровне: 2 часа в неделю, всего 68 часов за год. Поскольку при таком планировании ощущается недостаток времени для приобретения навыков применения полученных знаний, то данный элективный курс является существенным дополнением к основному ЕГЭ по физике предполагает достаточно высокий уровень знаний и умений в решении задач различной степени сложности, что требует полноценного обучения учащихся решению задач.

Элективный курс «Физика в задачах и экспериментах» составлен для учащихся 11 класса, проявляющим интерес к предметам естественно-научного цикла и планирующим поступление в технические, военные и медицинские ВУЗы.

Элективный курс включает решение вычислительных, логических, графических, геометрических, экспериментальных задач по электродинамике, оптике, атомной и ядерной физике.

Программа курса согласована с содержанием программы по физике для 10-11 классов Г.Я. Мякишева, что позволит осуществить повторение, совершенствование и практическое применение усвоенных знаний и умений. В то же время в программу элективного курса включен дополнительный материал, который необходим для подготовки к поступлению в ВУЗы.

Данная программа предполагает совершенствование подготовки школьников по освоению основных разделов физики. Содержание

базового глубиной рассмотрения отличается OT элективного курса физических процессов, расширением изучаемого материала по сравнению с программным, разбором задач, требующих нестандартных подходов. Настоящая программа является дополняющей материал к основному учебнику физики. Она позволяет более глубоко и осмысленно изучать практические и теоретические вопросы физики. Программа посвящена рассмотрению отдельных тем, важных для успешного освоения методов решения задач повышенной сложности. В программе рассматриваются теоретические вопросы, в том числе понятия, схемы и графики, которые часто встречаются в формулировках контрольно- измерительных материалов по ЕГЭ, а также практическая часть. В практической части рассматриваются вопросы по решению экспериментальных задач, которые позволяют применять математические знания и навыки, которые способствуют творческому и осмысленному восприятию материала.

Программа элективного курса согласована с требованиями государственного образовательного стандарта и содержанием основных программ курса физики профильной школы. Она ориентирует учителя и ученика на дальнейшее совершенствование уже усвоенных учащимися знаний и умений.

2. Содержание элективного учебного курса «Физика в задачах и экспериментах»

Электромагнетизм.

Взаимодействие постоянных магнитов. Направление вектора магнитной индукции. Принцип суперпозиции полей. Закон Ампера. Направление силы Ампера. Сила Ампера. Сила Ампера. Сила Лоренца. Движение заряженных частиц в магнитном поле. Заряженные частицы в электрическом и магнитном поле. Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Изменение магнитного потока. Изменение индукции магнитного поля. Изменение площади контура. ЭДС индукции в движущихся проводниках. Изменение угла между контуром и полем. Вращение рамки В однородном магнитном поле. Правило Ленца. Самоиндукция. Индуктивность. Энергия магнитного поля.

Электромагнитные колебания и волны.

Уравнение и график колебательного процесса. Колебательный контур. Сила тока в катушке, заряд и напряжение на конденсаторе. Свободные электромагнитные колебания. Закон сохранения энергии. Вынужденные электромагнитные колебания. Резонанс. Переменный ток. Производство, передача и потребление электрической энергии. Трансформатор. Электромагнитные волны. Длина волны. Различные виды электромагнитных излучений и их практическое применение.

Оптика.

Прямолинейное распространение света. Закон отражения света. Изображение предмета в плоском зеркале. Закон преломления света. Полное отражение. Линзы. Оптические приборы. светящихся точек и предметов в собирающей линзе. Изображение светящихся точек и предметов в рассеивающей линзе. Оптическая сила линзы. Формула тонкой линзы. Действительное изображение в собирающей линзе. Мнимое изображение в собирающей линзе. Рассеивающая линза. Увеличение линзы. Волновые свойства света. Дифракционная решетка. Дисперсия света. Основы относительности. Принцип специальной теории относительности Эйнштейна. Инвариантность скорости света. Формулы специальной теории относительности.

Квантовая физика.

Гипотеза М. Планка о квантах. Фотоэффект. Опыты А. Г. Столетова. Уравнение Эйнштейна для фотоэффекта. Световые кванты (фотоны). Гипотеза де Бройля о волновых свойствах частиц. Планетарная модель атома. Квантовые постулаты Бора. Линейчатые спектры. Нуклонная модель ядра. Ядерные силы. Энергия связи нуклонов в ядре. Радиоактивность. Закон радиоактивного распада. Ядерные реакции. Термоядерные реакции. Цепная реакция деления ядер.

2. Учебно-тематический план элективного учебного курса «Физика в задачах и экспериментах»

Распределение часов по темам:

No	Раздел	Кол-во час
1	Электромагнетизм.	10
2	Электромагнитные колебания и волны.	7
3	Оптика.	8
4	Квантовая физика.	9
Всего		34

1. Электромагнетизм – 10 часов.

Взаимодействие постоянных магнитов. Направление вектора магнитной индукции. Принцип суперпозиции полей. Закон Ампера. Направление силы Ампера. Сила Ампера. Сила Ампера. Сила Лоренца. Движение заряженных частиц в магнитном поле. Заряженные частицы в электрическом и магнитном поле. Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Изменение магнитного потока. Изменение индукции магнитного поля. Изменение площади контура. ЭДС индукции в

движущихся проводниках. Изменение угла между контуром и полем. Вращение рамки в однородном магнитном поле. Правило Ленца. Самоиндукция. Индуктивность. Энергия магнитного поля.

2. Электромагнитные колебания и волны – 7 часов.

Уравнение и график колебательного процесса. Колебательный контур. Сила тока в катушке, заряд и напряжение на конденсаторе. Свободные электромагнитные колебания. Закон сохранения энергии. Вынужденные электромагнитные колебания. Резонанс. Переменный ток. Производство, передача и потребление электрической энергии. Трансформатор. Электромагнитные волны. Длина волны. Различные виды электромагнитных излучений и их практическое применение.

3. Оптика – 8 часов.

Прямолинейное распространение света. Закон отражения света. Изображение предмета в плоском зеркале. Закон преломления света. Полное внутреннее отражение. Линзы. Оптические приборы. Изображение светящихся точек и предметов в собирающей линзе. Изображение светящихся точек и предметов в рассеивающей линзе. Оптическая сила линзы. Формула тонкой линзы. Действительное изображение в собирающей линзе. Мнимое изображение в собирающей линзе. Рассеивающая линза. Увеличение линзы. Волновые свойства света. Дифракционная решетка. Дисперсия света. Основы Принцип относительности. теории относительности специальной Эйнштейна. Инвариантность скорости света. Формулы специальной теории относительности.

4. Квантовая физика – 9 часов.

Гипотеза М. Планка о квантах. Фотоэффект. Опыты А. Г. Столетова. Уравнение Эйнштейна для фотоэффекта. Световые кванты (фотоны). Гипотеза де Бройля о волновых свойствах частиц. Планетарная модель атома. Квантовые постулаты Бора. Линейчатые спектры. Нуклонная модель ядра. Ядерные силы. Энергия связи нуклонов в ядре. Радиоактивность. Закон радиоактивного распада. Ядерные реакции. Термоядерные реакции. Цепная реакция деления ядер.

4. Образовательные технологии

Реализация данной программы предполагает классно-урочную систему с использованием различных технологий, форм, методов обучения, ведущие из которых:

личностно-ориентированные; проблемно-поисковые; проектно - исследовательские; проблемно-диалоговые; групповые; мультимедийные; деловые игры; интернет.

Реализация рабочей программы строится с учетом личного опыта

учащихся на основе информационного подхода в обучении, предполагающего использование личностно-ориентированной, проблемно-поисковой и исследовательской учебной деятельности учащихся сначала под руководством учителя, а затем и самостоятельной..

В качестве ведущей методики при реализации данной программы предполагается использование проблемного обучения.

Предполагается уверенное использование учащимися мультимедийных ресурсов и компьютерных технологий для обработки, передачи, систематизации информации, создания баз данных, презентации результатов познавательной и практической деятельности.

Формы деятельности учащегося:

- Самостоятельная индивидуальная работа.
- Работа в парах и группах по решению и составлению задач.
- Работа с различными источниками информации(учебники, справочники, научно-популярная литература).

5. Календарно-тематическое планирование элективного учебного курса по физике «Физика в задачах и экспериментах» в 11 классе

на 2022-2023 учебный год (1час в неделю, всего 34 часа)

N₂	Тема	Основные элементы содержания	Практика (демонстрации)	Использование
урока		урока		оборудования "Точка роста"
1.	Электромагнетизм (10 часов)	[3] Ханнанов Н.К. Как получить максимальный балл на ЕГЭ. Физика. Решение заданий повышенного и высокого уровня сложности	[1] Громцева О.И. Учебное пособие. Физика. ЕГЭ Полный курс А, Б, С. Самостоятельная подготовка к ЕГЭ	
1/1	Взаимодействие постоянных магнитов. Направление вектора магнитной индукции. Принцип суперпозиции полей.	Беседа с учащимися с целью актуализации исходного уровня знаний: [2] §10 A1-A6	Коллективное и самостоятельное решение задач: [2] §10 A7-A8	
2/2	Закон Ампера. Направление силы Ампера. Сила Ампера. Сила Лоренца.	Объяснение учителя. Коллективный разбор задач	[2] §10 A15-A-22	Демонстрация «измерение поля вокруг проводника с током»: датчик магнитного поля, два штатива, комплект проводов, источник тока, ключ.
3/3	Движение заряженных частиц в магнитном поле.	Объяснение учителя. [2] §10 C21-C22	[2] §10 A23-A24	
4/4	Заряженные частицы в электрическом и магнитном поле.	Беседа с классом. [2] §10 A25-A28	[2] §10 A29-A30	
5/5	Явление	Объяснение учителя. [2] §10	Коллективный разбор задач	Демонстрация «Явление

	электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Правило Ленца.	C37-C39	[2] §10 A31-A38, A40-A41	электромагнитной индукции»: датчик напряжения, соленоид, постоянный полосовой магнит, трубка ПВХ, комплект проводов.
6/6	Изменение магнитного потока. Изменение индукции магнитного поля.	[2] §10 C55-C56	[2] §10 A42-A54	
7/7	Изменение площади контура. ЭДС индукции в движущихся проводниках.	Совместная работа учителя и учащихся. [3] Пример 3.33, 3.34	[3] Пример 3.35, 3.36, 3.49	
8/8	Изменение угла между контуром и полем. Вращение рамки в однородном магнитном поле.	[3] Пример 3.37, 3.38, 3.50	[3] Пример 3.39, 3.40, 3.51	
9/9	Самоиндукция. Индуктивность.	[3] Пример 3.41, 3.42, 3.52	[3] Пример 3.43, 3.44, 3.53	
10/10	Энергия магнитного поля.	[3] Пример 3.45, 3.36, 3.54	[3] Пример 3.47, 3.48, 3.55	
2.	Электромагнитны е колебания и волны (7 часов)			
11/1	Уравнение и график	Беседа с классом для актуализации опорных	Совместное решение задач [1] §11 A1-A15	

	колебательного процесса. Колебательный контур.	знаний. [3] Пример 3.56, 3.57		
12/2	Сила тока в катушке, заряд и напряжение на конденсаторе.	Объяснение учителя. [3] Пример 3.58,3.59	Коллективный разбор задач [1] §11 C16-C18	
13/3	Свободные электромагнитные колебания. Закон сохранения энергии.	Совместная работа учителя и учащихся. [3] Пример 3.60, 3.61	Совместное и самостоятельное решение [1] §11 A19-A21, C22-C23	
14/4	Вынужденные электромагнитные колебания. Резонанс.	Объяснение учителя. [3] Пример 3.62,	Решение задач в группах с последующим обсуждением [1] §11A24-A25, A26-A28	
15/5	Переменный ток. Производство, передача и потребление электрической энергии. Трансформатор.	Совместная работа учителя и учащихся. [3] Пример 3.63	Совместное и самостоятельное решение [1] §11 Задачи №1-3	Двухканальная приставка- осциллограф, звуковой генератор, многообмоточный трансформатор, соединительные провода.
16/6	Электромагнитные волны. Длина волны.	Объяснение учителя. [3] Пример 3.64	Решение задач в группах с последующим обсуждением [1] §11 A29-A33, B34, A35-A37	
17/7	Различные виды электромагнитных излучений и их практическое	Совместная работа учителя и учащихся. [3] Пример 3.65	Коллективный разбор задач [1] §11 A38-A40	

	применение.			
3.	Оптика (8часов)			
18/1	Прямолинейное распространение света. Закон отражения света. Изображение предмета в плоском зеркале.	Беседа с классом для актуализации опорных знаний [3] Пример 3.66-3.67	Совместное решение задач [1] §12 А1-А6, Задание на стр. 326	
19/2	Закон преломления света. Полное внутреннее отражение.	Объяснение учителя. [3] Пример 3.67	Коллективный разбор задач [1] §12 В7, Задание на стр. 327	Осветитель с источником света на 3,5 В, источник питания, комплект проводов, щелевая диафрагма, полуцилиндр, планшет на плотном листе с круговым транспортиром.
20/3	Линзы. Оптические приборы.	Совместная работа учителя и учащихся [3] Разбор теории	Совместное и самостоятельное решение [1] §12 Задание на стр. 328	Осветитель с источником света на 3,5 В, источник питания, комплект проводов, щелевая диафрагма, экран стальной, направляющая с измерительной шкалой, собирающие линзы, рассеивающая линза, слайд «Модель предмета» в рейтере.
21/4	Изображение светящихся точек и предметов в собирающей линзе.	Объяснение учителя [3] Пример 3.68-3.69	Решение задач в группах с последующим обсуждением [1] §12 C8-C9, Задание на стр.329	
22/5	Изображение светящихся точек и предметов в рассеивающей линзе.	Совместная работа учителя и учащихся [3] Пример 3.70-3.71	Совместное и самостоятельное решение задач [1] §12 Задание на стр.330, Задачи С10-12	

23/6	Оптическая сила линзы. Формула тонкой линзы. Увеличение линзы. Волновые свойства света. Дифракционная решетка. Дисперсия	Объяснение учителя [3] Пример 3.72-3.73 Совместная работа учителя и учащихся [1]: Разбор теории на стр.337-343	Решение задач в группах с последующим обсуждением [1] §12 Задание на стр. 331-332, Задачи С13-14 Совместное решение задач [1] §12 Задачи №1-9	
25/8	света. Принцип относительности Эйнштейна. Инвариантность скорости света.	Совместная работа учителя и учащихся [1]: Разбор теории на стр.343-344	Коллективный разбор задач [1] §12 A15-A18	
4.	Квантовая физика (8 часов)			
26/1	Гипотеза М. Планка о квантах. Фотоэффект. Опыты А. Г. Столетова.	Беседа с классом для актуализации опорных знаний [3] Пример 4.1-4.4	Совместное решение задач [1] §13 C1-C9	
27/2	Уравнение Эйнштейна для фотоэффекта. Световые кванты (фотоны).	Объяснение учителя. [3] Пример 4.5-4.8	Коллективный разбор задач [1] §13 Задачи №1-10	
28/3	Гипотеза де Бройля о волновых свойствах частиц.	Совместная работа учителя и учащихся [3] Разбор теории	Совместное и самостоятельное решение [1] §13 C10-C11	
29/4	Планетарная модель атома.	Объяснение учителя [3] Пример 4.9-4.13	Решение задач в группах с последующим обсуждением	

	Квантовые постулаты Бора.		[1] §13 A12-A14, A15-A16	
30/5	Линейчатые спектры.	Совместная работа учителя и учащихся [3] Пример 4.14-4.17	Совместное и самостоятельное решение задач [1] §13 Задачи А17-А21	
31/6	Нуклонная модель ядра. Ядерные силы. Энергия связи нуклонов в ядре.	Объяснение учителя [3] Пример 4.18-4.23	Решение задач в группах с последующим обсуждением [1] §13 Задачи А22-А25	
32/7	Радиоактивность. Закон радиоактивного распада.	Совместная работа учителя и учащихся [1]: Пример 4.24-4.29	Совместное решение задач [1] §13 В26-В27	
33/8	Ядерные реакции. Цепная реакция деления ядер.	Совместная работа учителя и учащихся [1]: Пример 4.28-4.32	Коллективный разбор задач [1] §13 Задачи №1-5	
34/9	Термоядерные реакции.	Совместная работа учителя и учащихся [3] Пример 4.28-4.32	Совместное и самостоятельное решение [1] §13 Задачи №6-9	

6. Планируемые результаты обучения

В результате реализации элективного курса «Физика в задачах и экспериментах» учащиеся ознакомятся и овладеют основными уровнями требований к экзамену по физике в формате ЕГЭ, а именно:

- ервый уровень научатся анализировать содержание задачи, выполнять отдельные операции, общие для большого класса задач;
- торой уровень овладеют операциями, связанными с особенностями использования различных способов решения задач (вычислительных, графических, качественных, экспериментальных);
- ретий уровень овладеют системой способов и методов решения задач, алгоритмами решения задач по конкретным темам разделов физики и общим алгоритмом решения задач;
- етвертый уровень овладеют новыми способами решения физических задач, научатся применять общий алгоритм к решению задач по темам и разделам;
- ятый уровень научатся переносить структуру деятельности по решению физических задач на решение задач по другим предметам естественного цикла.

Учащиеся, в ходе занятий, *приобретут*: навыки самостоятельной работы; умения анализировать условие задачи, переформулировать и заменять исходную задачу другой задачей или делить на подзадачи; *овладеют* основными умственными операциями, составляющими поиск решения задачи; *научатся* составлять план решения, проверять предлагаемые для решения гипотезы, *освоят* определенную технику решения задач по физике в соответствии с возрастающими требованиями современного уровня процессов во всех областях жизнедеятельности человека.

В результате освоения элективного курса учащиеся научатся:

- анализировать физическое явление;
- анализировать полученный ответ;
- классифицировать предложенную задачу;
- выбирать рациональный способ решения задачи;
- производить расчеты по физическим формулам
- применять основные законы физики

Достижение планируемых результатов оценивается по успешности выполнения тематических тестов в форме ЕГЭ путем самооценки.

7. Список используемой литературы

- 1. Учебник: Мякишев Г.Я., Буховцев Б.Б., Сотский Н. Н. под редакцией Парфентьевой Н.А. Физика 10 класс. АО «Издательство «Просвещение».
- 2. Учебник: Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. под редакцией Парфентьевой Н.А. Физика 11 класс. АО «Издательство «Просвещение».
- 3. Сборники задач: Физика. Задачник. 10-11 кл.: Пособие для общеобразоват. учреждений / Рымкевич А.П. 8-е изд., стереотип. М.: Дрофа, 2020.-192 с.

Дидактические материалы:

- 1. Громцева О.И. Самостоятельные и контрольные работы по физике 11 класс.- М: Экзамен 2021.
- 2. Громцева О.И. Самостоятельные и контрольные работы по физике 11 класс.- М: Экзамен 2019.
- 3. Кирик Л.А., Дик Ю.И.. Физика. 10,11 классах. Сборник заданий и самостоятельных работ.— М: Илекса, 2020.
- 4. Кирик Л. А.: Физика. Самостоятельные и контрольные работы. Механика. Молекулярная физика. Электричество и магнетизм. Москва, Илекса, 2020г.
- 5. Марон А.Е., Марон Е.А.. Физика10 ,11 классах. Дидактические материалы.- М.: Дрофа, 2021.